The Rhomboid Protease GlpG Promotes the Persistence of Extraintestinal Pathogenic Escherichia coli within the Gut
نویسندگان
چکیده
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are typically benign within the mammalian gut but can disperse to extraintestinal sites to cause diseases like urinary tract infections and sepsis. As occupation of the intestinal tract is often a prerequisite for ExPEC-mediated pathogenesis, we set out to understand how ExPEC colonizes this niche. A screen using transposon sequencing (Tn-seq) was performed to search for genes within ExPEC isolate F11 that are important for growth in intestinal mucus, which is thought to be a major source of nutrients for E. coli in the gut. Multiple genes that contribute to ExPEC fitness in mucus broth were identified, with genes that are directly or indirectly associated with fatty acid beta-oxidation pathways being especially important. One of the identified mucus-specific fitness genes encodes the rhomboid protease GlpG. In vitro, we found that the disruption of glpG had polar effects on the downstream gene glpR, which encodes a transcriptional repressor of factors that catalyze glycerol degradation. Mutation of either glpG or glpR impaired ExPEC growth in mucus and on plates containing the long-chain fatty acid oleate as the sole carbon source. In contrast, in a mouse gut colonization model in which the natural microbiota is unperturbed, the disruption of glpG but not glpR significantly reduced ExPEC survival. This work reveals a novel biological role for a rhomboid protease and highlights new avenues for defining mechanisms by which ExPEC strains colonize the mammalian gastrointestinal tract.
منابع مشابه
Structure of Rhomboid Protease in a Lipid Environment
Structures of the prokaryotic homologue of rhomboid proteases reveal a core of six transmembrane helices, with the active-site residues residing in a hydrophilic cavity. The native environment of rhomboid protease is a lipid bilayer, yet all the structures determined thus far are in a nonnative detergent environment. There remains a possibility of structural artefacts arising from the use of de...
متن کاملSubstrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures
The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl...
متن کاملContext-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virule...
متن کاملStructure of Rhomboid Protease in Complex with β-Lactam Inhibitors Defines the S2′ Cavity
Rhomboids are evolutionarily conserved serine proteases that cleave transmembrane proteins within the membrane. The increasing number of known rhomboid functions in prokaryotes and eukaryotes makes them attractive drug targets. Here, we describe structures of the Escherichia coli rhomboid GlpG in complex with β-lactam inhibitors. The inhibitors form a single bond to the catalytic serine and the...
متن کاملFunctional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii.
The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and required for the production of an extracellular signaling molecule that regulates cellular functions including peptidoglycan acetylation, methionine transport, and cysteine biosynthesis. Additional aarA-dependent phenotypes include (i) loss of an extracellular yellow pigment, (ii) inab...
متن کامل